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This paper presents a critical analysis of some of the most promising approaches to geometric collision avoidance in multi-agent
systems, namely, the velocity obstacle (VO), reciprocal velocity obstacle (RVO), hybrid-reciprocal velocity obstacle (HRVO) and
optimal reciprocal collision avoidance (ORCA) approaches. Each approach is evaluated with respect to increasing agent populations
and variable sensing assumptions. In implementing the localised avoidance problem, the author notes a problem of symmetry not
considered in the literature. An intensive 1000 cycle Monte Carlo analysis is used to assess the performance of the selected algorithms
in the presented conditions. The ORCA method is shown to yield the most scalable computation times and collision likelihood in the
presented cases. The HRVO method is shown to be superior than the other methods in dealing with obstacle trajectory uncertainty
for the purposes of collision avoidance. The respective features and limitations of each algorithm are discussed and presented through
examples.
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1. Introduction

Collision avoidance within systems composed of multiple
physical agents has been a challenge since their concep-
tion. From both a safety and system preservation perspec-
tive, collision prevention must be considered a fundamen-
tal aspect of its autonomy. The application of robotics in
an increasingly wide range of civilian use cases has meant
that new systems are being designed to navigate in clut-
tered, highly dynamic environments with an emphasis on
reliability and safety. Furthermore, guaranteeing a sys-
tems reliability in scenarios where communication infras-
tructure is inconsistent, disrupted or malicious, present
significant challenges to upcoming systems.

There are two main types of collision avoidance ap-
proaches: i) cooperative, ii) non-cooperative [2, 3]. Both
types of approaches typically assume that the information
about the object geometry is known. Cooperative collision
avoidance approaches operate on the assumption of an im-
plicit, unilateral communication layer through which the
intent of any agent can be freely communicated to an-
other. Non-cooperative approaches, however, operate with
limited knowledge of the agent’s objective, only the kine-
matic parameters that can be deduced by its own on-
board tracking equipment. This reduces the situation to a

localised sense, detect and avoidance (SDA) problem [4,5].
Robust non-cooperative methods are highly desirable in
novel environments, or in the event communication is lim-
ited or obstructed. For this reason more sophisticated sys-
tems tend to combine aspects of cooperative techniques
with SDA approaches as a fail-safe.

Previous approaches to solving the SDA problem in-
clude probabilistic modelling [6], conflict resolution inter-
val and agent trajectory optimisation [5, 7–9]. Classical
approaches include the application of potential fields as
seen in [10] and numerous geometry based avoidance tech-
niques [11,12]. The concept of the collision cone (CC) and
the velocity obstacle (VO) is introduced in [13], and has
grown in popularity within the multi-agent community.
This is partly due to the geometric construction of veloc-
ity constraints being intuitive, but also allows a resolution
velocity to be found quickly and with minimal obstacle in-
formation [14].

Iterations of the VO concept include the reciprocal
velocity obstacle (RVO) [14–17], which has been shown
to reduce oscillatory agent paths by considering the re-
active nature of avoiding agents. Obstacles with variable
acceleration are addressed under the notion of accelera-
tion velocity obstacles (AVO) in [18]. Hybrid-reciprocal
velocity obstacles (HRVO) are introduced in an effort to

∗The authors gratefully acknowledge the support from the UK EPSRC under grant number EP/M506618/1. The Matlab R© Open-
source Multi-agent Simulator (OpenMAS) source code is available at https://github.com/douthwja01/OpenMAS [1]
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Figure 1. A description of the adopted sensor model defining the spherical position of obstacle j, at time k, as its position in the
azimuth λj , distance dj,k and angular width αj,k.

eliminate direction ambiguity in [12, 19] and with it; the
phenomenon known as the reciprocal dance. Despite pro-
ducing smoother trajectories, the HRVO is not capable of
guaranteeing that trajectories will be smooth. A method
proposed to address this is the Optimal Reciprocal Colli-
sion Avoidance method, by adopting the concept of half-
planes as linear constraints [20,21]. The kinematic velocity
obstacles (KVO) presented in [22] demonstrate how addi-
tional agent kinematic assumptions and constraints might
also be used to better approximate the escape velocity
search volume. Similar methods demonstrate considera-
tion for non-linear obstacle motion in [23] using a non-
linear description of the agent and obstacle motion. The
breadth of study within geometry based avoidance is sub-
stantial having been applied in various contexts, namely;
pedestrian modelling, small robotic systems, unmanned
aerial systems (UAS) and artificial intelligence (AI).

This paper presents some of the most promising ap-
proaches for collision avoidance in communication denied
environments. These approaches are studied over a range
of scenarios with increasing complexity in order to ex-
amine their effectiveness over increasing obstacle popula-
tions. In addition, we demonstrate how uncertainty in the
observation of obstacles effects the performance of each al-
gorithm in the presented cases. In an intensive 1000 cycle
Monte Carlo analysis, we observe several key performance
parameters, namely; rate of collision, computation time
and minimum maintained separation. The pros and cons
of each algorithm are summarised and presented for the
reader. In computing agent trajectories locally, the author
notes a problem of symmetry not considered in the liter-
ature. The findings from this study can be applied in a
number of fields, from swarm systems to air traffic con-
trol. Two dimensional collision avoidance is considered,
although the extension to the three dimensional case is
natural.

The structure of the paper is as follows. Section 2
introduces the problem of interest, the agent and sensor
constraints. Section 3 presents the mainstream velocity

obstacle approaches to collision avoidance and their prin-
ciple differences. Section 4 presents performance evalua-
tion and validation of the considered algorithms. They
are assessed and compared over several scenarios. Finally,
Section 5 summarises the results.

2. Problem Description

We begin by considering the interactions of one agent i
moving through an environment where numerous obsta-
cles are moving freely. Both agents are moving through
two dimensional (2D) Cartesian space. The agents veloc-
ities are denoted by ~vi ∈ R

2×1 and ~vj ∈ R
2×1, with rep-

resentative radii ri and rj , respectively. The position of
agent i at time tk+1 is defined as ~pi,k+1 = ~pi,k +∆t · ~vi,k
where ∆t is the sampling time. We define a maximum
speed constraint vmax that limits the velocities available
to the avoidance routine, represented simply as ‖~vi‖ ≤
vmax, where ||.|| denotes the Euclidean norm. We assume
that each agent is able to make its own observations of
its surrounding using on board sensors such as a camera
and range finder. The resulting measurements represent
the spherical position of agent j in the form of an az-
imuth position, range and width, denoted by λj ∈ [−π, π],
dj ∈ [0, dmax] and αj ∈ [−π, π], respectively. The param-
eter dmax is used here to describe the maximum visual
range of agent i. Agent i observes agent j in its body axes
as seen in Figure 1 [5].

Agent i measures the spherical position, λj,k, range
dj,k, and angular width αj,k in the body axes of i. The
agent then computes its equivalent Cartesian position
~pj,k = [xj,k, yj,k]

T and radius estimate rj,k at time k. The
Cartesian velocity of the obstacle is then calculated from
successive position samples ~vj,k = 1

∆t
(pj,k − pj,k−1). The

agents current knowledge of the obstacle j at time tk, is

then defined by the state vector ~Xj,k = [pj,k, vj,k, rj ]
T .

All agents are assumed capable of retaining a time-
variant set of states that correspond to all obstacles in a
neighbourhood local to agent i. The limits of this neigh-
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Figure 2. The V Oj (shaded blue) from the initial CCij .
Here the V Oj defined in the configuration space of i, from
the relative position λij , configuration radius rc = ri + rj
and velocity ~vj .

Figure 3. The construction of RV Oj by averaging the ve-
locities of the agent ~vi and obstacle ~vj .

bourhood is defined by a unilateral maximum neighbour-
hood separation dj,k ≤ dmax shown in Table 1. The agent
population is assumed to be coordinated via some unspec-
ified global objective. This objective is represented as a se-
quence of way-points in the global space; between which
collisions may occur [24]. As an agent achieves a way-
point, the target way-point is immediately reallocated as
the agent moves into the next segment of the objective.
To guarantee that collisions will otherwise occur, the way-
points are selected to induce a conflict. In accordance with
the SDA concept, the global position of the target way-
point is presented locally to the agent by transforming
into its body axes ~pwp

i = R
G
i,k(~p

wp − ~pi). Here R
G
i,k de-

fines the global to body rotation matrix of agent i at time
k. At all times, the position of agent i’s way-point ~pwp

i

is assumed observable to agent i from its current posi-
tion ~pi. The preferred velocity is that in the direction of

~pwp
i ; expressed as ~vprefi =

~p
wp

i
−~pi

||~pwp

i
−~pi||

·vpref where vpref is the

preferred speed.

3. Velocity Obstacle Methods

3.1. The Velocity Obstacle

The concept of the velocity obstacle (VO), based on the
geometric assembly of the collision cone (CC), was first
presented in [13]. Obstacles are observed in the agents
local horizontal plane (XY) as their planar cross-section
centred at ~pj as seen in Figure 2. Here, the collision cone
for obstacle j is defined as CCij from the geometric prop-

erties of the obstacles relative position ~λij , configuration
radius rc and velocity ~vj .

The VO is defined as a region containing the set of
velocity vectors at tk that will increase the chance of col-
lision with obstacle j. It is assembled by translating CCij

via the Minkowski sum V Oij = CCij ⊕ ~vj . In the consid-
eration of multiple obstacles, the union of multiple V O1:n

is taken. Agent velocities are therefore considered valid if
~vi,k+1 6∈ V Ok = ∪n

j=1V Oj,k [13]. Velocities satisfying this
constraint describe a collision free trajectory for agent i
in the presence of obstacles V Oj=1:n for time tk.

In practice, oscillatory trajectories are often observed
in instances where two agents attempt to resolve a conflict
with one another using the VO method. This often propa-
gates until the point of collision occurs; as the two agents
repeatedly resolve velocities ~vi,k+1 that imply a new con-
flict at tk+1 [15]. Obstacles that are static, or moving with
constant velocity can otherwise be handled using the VO
approach.

3.2. The Reciprocal Velocity Obstacle

An iteration of the conventional VO method, known as
the RVO [15], attempts to consider the reciprocal motion
of the second decision making agent j in order to produce
smoother avoidance trajectories. The agent generates a
VO with an apex augmented by the average of the two
object velocities ~vi,k+1 6∈ CCij ⊕ (~vi,k +~vj,k)/2. This con-
cept effectively allows the agent to mediate its correction
trajectory ~vi,k+1 in accordance with ~vj . At time tk, the
RVO contains represents the region of velocities for i that
are the average of both the velocity of agent i and the
velocity of obstacle j.

The RVO is shown to eliminate the V O oscillation
mentioned in Section 3.1 [15], and the resultant resolu-
tion trajectories are seen to be smoother. While this is
the case, agent i and obstacle j do not explicitly agree
on which sides they will approach each other. This can
lead to scenarios where agents will mirror the trajectories
of their respective obstacles in an attempt to avoid them.
The oscillations induced by this behaviour, distinct from
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Figure 4. The relation of the hybrid reciprocal velocity ob-
stacle HRVO to the initial V Oj and the RV Oj for a given
obstacle B.

Figure 5. a) The geometric description of the truncated VO
for obstacle j, defined by the truncation parameter τ , relative
position (~pj − ~pi) and configuration radius rc = ri + rj . b) The
assembled ORCA obstacle and velocity correction ~u as a result
of obstacle j.

those of the VO, are often referred to as a reciprocal dance.

3.3. The Hybrid Reciprocal Velocity

Obstacle

An advancement on the VO problem has been proposed
to negate the causes of reciprocal dance by augmenting
the VO and RVO regions. The HRVO, shown in Figure 4,
alters the apex of the HRVO in order to example different
behaviour depending on the relative motion of the obsta-
cle ~vj . The centerline of V Oj and RV Oj are co-linear in
nature, therefore if the obstacle is moving right, the agent
should resolve a trajectory ~vi,k+1 to pass the obstacle on
the left and vice versa. Failure to do so brings about the
phenomena of the reciprocal dance. Although the method
is shown to improve the generation of smooth avoidance
trajectories, it cannot guarantee it theoretically [12]. In
the example given in Figure 4, directional bias is estab-
lished by adjusting the apex of the HRV Oj to be the
intersection of the leading edge of RV Oj the trailing edge
of V Oj (i.e. HRV Oij = CCij ⊕ ~vHRVO. The resulting
constraint set imposed upon agent i at time tk is then
written ~vi,k+1 6∈ HRV Ok = ∪n

j=1HRV Oi,k [12].
Typically the RVO and HRVO are only necessary

in the computation of inter-agent avoidance trajectories.
The global VO set for agent i can instead be written
as the union of the reciprocal variants (RVO or HRVO)
for surrounding agents Aj and the VO for obstacles Oj :
~vi,k 6∈ HRV Ok =

⋃n
Aj=1 HRVOAj

∪
⋃n

Oj=1 VOOj
.

3.4. Optimal Reciprocal Collision

Avoidance

The RVO concept has be extended more recently in
a method termed optimal reciprocal collision avoidance
(ORCA). The ORCA approach is described well in [25],

demonstrating how the ORCA velocity obstacle is formu-
lated for a given reciprocally collision avoiding agent pair
i and j. The resultant trajectory is not only smooth but,
for small time steps, can be seen as continuous in the ve-
locity space. The truncation parameter, τ , represents the
time window for which a collision free trajectory should
be guaranteed, i.e the agent can move at its new velocity
for τ seconds.

If we assume that ~vi and ~vj are those that will
bring about a collision in the future, then we define ~u
as the vector to the point closest to the boundary of V Oj :
~u = (argmin~v∈δVOτ ||~v− (~vi−~vj)||)− (~vi−~vj)(see Figure
5). Using the “outward” facing normal ~n of the boundary
at the point (~vi − ~vj) + ~u and the assumption that the
responsibility that the avoidance is shared equally, the
formulation for the ORCAj constraint can be written as
ORCAτ

k = ~v|~v− (~vi+
1
2
~u).~n ≥ 0. The geometric represen-

tation of ~v is given in Figure 5(b). Here it is represented
as a “half-plane” with normal ~n, with the initial point at
~p = ~vi +

1
2
~u [25].

The ORCA lines themselves allow the scenario to be
described using only linear constraints. In addition, rep-
resentation of the RVO as half-planes allows for simplifi-
cation of the constraint set by eliminating those already
covered by other ORCA lines, whilst guaranteeing contin-
uously smooth agent trajectories.

3.5. Trajectory Selection

How the optimal resolution velocity is determined from
the constraint sets defined in Sections 3.1-3.4, is also sub-
ject to strategy [13]. In the literature this is typically de-
termined by considering the minimum deviation from a

desired trajectory ~vprefi subject to the union of the V Ok

set. In such cases the optimal velocity can then be ex-

pressed as ~v∗i = argmin~v 6∈V O(||~v − ~vprefi ||). In this paper,
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the optimal resolution velocity is determined similarly, us-
ing the clear path method [25], subject to the global con-
straint set of a given algorithm.

4. Experimental Results

4.1. Experimental Conditions

In this section we demonstrate the conflict resolution
methods outlined in Section 3. The agent population is
initialised with the parameters defined in Table 1. The
noise parameters are applied to better represent sensor-
derived measurement of the obstacle trajectory. Agents
are designated a target way-point at the antipodal po-
sition of a concentric circle with a radius of 20m. The
agents are tasked with crossing the circle to reach their
way-point positions ~pwp

i whilst avoiding collision. In Fig-
ure 6 the agent initialise at their origins (circles) and move
through the collision centre to reach their respective way-
points (triangles). Events such as collisions or way-point
incidence are said to occur when the following condition
is violated ||~pi − ~pwp

i || < (ri + rwp
i ) − γ, where the pa-

rameter γ is a condition tolerance that aims to eliminate
ambiguity between collisions and narrow-misses caused by
the nature of discrete simulation. The agent and scenario
parameters are otherwise explicitly stated in Table 1.

Table 1. A table of the assumptions and
agent parameters used in the preceding exam-
ple scenarios, including the sensor uncertainties
used in the representative sensing condition.

Parameter Value

Maximum speed (vmax) 2 m/s
Preferred speed (vpref ) 1m/s
Agent critical radius (ri) 0.5 m
Neighbour horizon (dmax) 15 m

Camera standard deviation (σα) 5.208×10−5 rad
Range-finder standard deviation (σr) 0.5 m
Airspeed standard deviation (σs) 0.5 m/s
Position standard deviation (σp) 0.5 m
Agent orbital radius 10 m
Way-point orbital radius 20 m
Cycles 1000
Sampling rate (∆t) 0.25 s

Way-points & collisions tolerance (γ) 1×10−3 m

4.2. Performance Evaluation

The selected algorithms presented in Section 3 are vali-
dated over scenarios with an increasing number of agents.
We examine the ten agent scenario and discuss the prin-
ciple difference in the algorithms’ performance. Figure 6
demonstrates the trajectories generated by the VO algo-
rithm. When compared to the RVO in Figure 7 the trajec-
tory adjustments can be seen to be abrupt, with greater

oscillation throughout, until all conflicts are resolved. The
compensation for obstacle movement is clearly seen in Fig-
ure 7 as the trajectories are shown more gradual. This
indicative of the adjustment of the RVO in response to
the movement of the obstacles; leading to fewer instances
of harsh correction. Oscillation in the form of reciprocal
dance can still be observed however as the direction of pass
is resolved. In comparing the RVO trajectories to that of
the HRVO in Figure 8; their is a clear reduction in the os-
cillation as the agents initially determine their direction
of pass. The HRVO directional bias can also be observed
from the agent trajectories, indicated by the emergent spi-
ral behaviour around the conflict centre.

The representation of the VO as ORCA constraints is
shown to produce trajectories similar to that the of HRVO
in Figure 9. The linearity of the of the constraints how-
ever is shown to create smooth trajectories throughout
the conflict scenario, resulting in a smaller overall course
deviations. The selected algorithms were exampled in sce-
narios with 2, 5, 10 and 20 agents and their performance
measured over 1000 Monte Carlo independent iterations.
In addition to this, two sensor conditions were observed;
A) Ideal Sensing; the agents are given perfect knowledge
of the surrounding obstacles B) Representative Sensing;
the agents adopt the sensor properties defined in Table 1.

Table 2. Algorithm performance of in the same
10 agent scenario. Condition A) Sensing capabili-
ties are assumed ideal, Condition B) Assuming rep-
resentative sensing. Each value represents the mean
across 1000 independent Monte Carlo iterations.

Algorithm
Condition

Mean
Collisions

Mean
Minimum

Separation (m)

Mean
Computation
Time (ms)

Condition A

VO 9.203 0.581 2.000
RVO 3.140 0.831 2.100
HRVO 0.053 0.996 2.400
ORCA 0.038 1.000 0.460

Condition B

VO 7.749 0.624 2.000
RVO 9.380 0.577 2.100
HRVO 2.878 0.836 2.600
ORCA 6.881 0.757 0.463

The mean behaviour of the presented approaches are
shown in Table 2, where a clear difference can be seen
between the Ideal and Representative sensing conditions
during the 10 agent example scenario. Under the assump-
tions of ideal obstacle telemetry, the compensative na-
ture of the RVO is shown to reduce the mean number of
collisions to 31.40%. This is a significant reduction from
the 92.03% achieved in same scenario using the original
VO method. The innate directional bias in the formation
of the HRVO is shown to be a clear advantage over the
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Figure 6. A depiction of ten agents using the VO based
reactive avoidance in a concentric collision scenario. The
oscillations due to obstacle compensative motion can be
clearly observed as the agent progress towards the collision
centre.

Figure 7. A depiction of the ten agent concentric scenario
and applying the RVO based avoidance method. Abrupt
trajectory changes can be seen observed, with distinct os-
cillations as new agents j enter the visual horizon of agent
i.

Figure 8. The ten agent concentric scenario repeated with
the HRVO obstacle generation method applied. Oscillations
can be observed as the procedure begins, however shown to
be near linear as the direction of pass is resolved.

Figure 9. The same 10 agent scenario repeated under the
ORCA obstacle generation method. The resultant trajec-
tories appear as smoother, more gradual adjustments than
the previous methods.
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VO and RVO methods, resulting in a mean collision rate
of 0.53%. The lowest mean number of collisions however
was found using the ORCA method; averaging 0.38% over
1000 iterations.

Observing the behaviour of the algorithms in the
presence of sensor uncertainty demonstrated a 5.08%
mean increase in computation time. This can be seen more
clearly in Figure 10. A disadvantage of the RVO method
is shown here; with a factor of 3 increase in mean col-
lision likelihood across the 1000 iterations. This may be
due the aggravation of the reciprocal corrections (recipro-
cal dance) by the uncertainty in obstacle trajectory. Sim-
ilar behaviour can also be observed for the ORCA algo-
rithm, as the sensor uncertainty is shown to significantly
reduced its effectiveness under this regime also. The mean
minimum separation achieved by th ORCA approach was
shown to be the closest to the 1m boundary condition.
This suggests a clear benefit of the ORCA method to be
its consistency in achieving safe separation in ideal condi-
tions. Although, in considering uncertainty resulted in a
mean collision likelihood 40.03% higher than the similarly
effective HRVO approach.

Studying Figure 10, we observe an exponential re-
lationship between the size of the agent population and
the mean algorithm computation time for the VO, RVO
and HRVO methods. The ORCA approach however, with
its linear representation of the constraint set, is shown to
yield computation times that scale linearly with increasing
agent number. The relationship between the performance
reduction rate rORCA = 3.4 × 10−5s/n is shown to be
distinctly lower than the other presented approaches. The
ORCA algorithm therefore has a clear advantage when
considering scalability for larger multi-agent systems, al-
beit more susceptible to uncertainty than the HRVO. All
analyses were completed using an Intel Core i7-6600HQ
quadcore (@2.8GHz) CPU. Code for the presented algo-
rithms and scenarios are also available on Github [1].
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Figure 10. The mean algorithm computation times in both
condition A) Ideal obstacle knowledge is assumed B) Obsta-
cle telemetry data is subject to interference. Their effect on
computation time is observed with an increasing number of
obstacles.

The relation between the agent density and the number
of collisions is shown in Figure 11. As expected, the addi-
tion of obstacle uncertainty is shown to generally induce
a higher rate of collision in presented methods. This is
with the exception of the original VO method; where the
method is shown to be more effective with uncertainty.
Methods considering both the velocity of i and j in the
design of their constraints are shown to be more adversely
effected by sensor noise. The most effective methods of
avoiding collision are shown to be the HRVO and ORCA
methods. However with representative sensor conditions
the ORCA algorithm demonstrated a much higher rate of
collision.
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Figure 11. The mean rate of collision in both condition A)
Ideal obstacle knowledge is assumed B) Obstacle telemetry
data is subject to interference.

4.3. A Problem of Symmetry

In collision scenarios involving greater than two agents,
there exists a problem of symmetry. While unlikely to oc-
cur in real systems, the situation may occur where an
agent is presented with a constraint set that is symmetric
about the forward direction ~vi (as seen in Figure 12).

Figure 12. A depiction of the scenario where the symmetry
of the constraint set will induce a dead-lock scenario.

As Figure 12 suggests, the agent will choose a velocity
minimising the separation with the way-point Wi. Any
velocity that acts away to alleviate the situation is less
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optimal than the current preferred velocity. Unless a pro-
vision is made to allow the agent to violate a constraint
momentarily, the agents velocity will tend to zero. This re-
sults in behaviour similar to the Dead-lock scenario in [12],
where the density of the constraint sets mutually prevents
any agent from progressing to their target positions.

In such scenarios a higher level strategy must be ap-
plied to intelligently preserve a collision-free trajectory by
manipulating the constraint set or designing a new desired
velocity (~v pref). As part of the Monte Carlo analysis, the
initial positions of the agents are perturbed by a small
noise signal σp = 0.5m. This process also aids in the pre-
vention of the dead-lock by ensuring that the scenario is
asymmetrical.

5. Conclusions

In this paper several promising geometric approaches to
the SDA problem are presented for use in multi-agent
systems. Uncertainty in obstacle trajectory is shown to
increase the mean computation time of all the proposed
approaches without compensative measures.

The HRVO and ORCA methods are shown to be
more effective in both negotiating obstacle cluttered en-
vironments whilst enduring uncertainty in obstacle tra-
jectory. The ORCA method is also shown to generate
both smoother resolution trajectories than the other pre-
sented methods despite low tolerance to obstacle uncer-
tainty. The HRVO is shown to be statistically competitive
with the ORCA in likelihood of collision, with higher tol-
erance to obstacle uncertainty. The benefit of the ORCA
approach however, can clearly be seen in its scalability
however, yielding computation times distinctly lower than
the other methods.

The presented algorithms have shown that reactive
collision avoidance can be sufficient to mitigate multiple
collisions in a communication denied environment. Fur-
ther work into inherent avoidance will examine such al-
gorithms in the presence static and dynamic obstacles in
more sophisticated coordinated tasks.
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